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A Cluster Analysis of Pediatric Cancer Incidence
Rates in Florida: 2000–2010

Raid AMIN, Michael HENDRYX, Matthew SHULL, and Alexander BOHNERT

This study uses disease surveillance cluster analysis methods to identify clusters for the three most common pediatric cancers in Florida
(brain tumors, leukemia, lymphoma). In addition to a univariate purely spatial analysis, a space–time analysis is done, followed by a
nonparametric permutation test for space–time interaction. This is followed by a multivariate spatial analysis for the three pediatric cancer
types together. The main findings include a significant spatial cluster for each of the three cancer types covered in this study, in addition to
identifying two significant clusters for all pediatric cancer types combined.

KEY WORDS: Disease surveillance; SaTScan; Spatial epidemiology.

1. INTRODUCTION

Cancer is the leading cause of death by disease among chil-
dren aged 1–14 (CDC 2013a). The most common forms of
pediatric cancers are leukemia and cancers of the brain and ner-
vous system (NCI 2013). The incidence rates for total pediatric
cancer, and for lymphoma, leukemia, and brain cancer have in-
creased over time, as indicated by data for the period 1978–2004
(NCI 2013) and also for the period 1999–2010 (CDC 2013b).
The causes of pediatric cancer are poorly understood (Ries et al.
1999; NCI 2013).

Genetic conditions such as Down syndrome are strongly
linked to some childhood cancers. Hispanic ethnicity has been
linked to higher incidence for acute myeloid leukemia (Ries
et al. 1999). Other studies have found that White children, com-
pared to Black children, have higher risk for acute lymphoblastic
leukemia (Ries et al. 1999). Possible environmental causes of
childhood cancers such as exposures to electromagnetic fields
(Draper 1993) or second-hand tobacco smoke have resulted in
inconsistent findings, although a link to paternal smoking seems
likely (Boffetta, Trédaniel, and Greco 1999; Ries et al. 1999; So-
rahan et al. 2001). A recent study conducted in Italy by Badaloni
et al. (2013) found no association between incidence of child-
hood leukemia and air pollution as measured by particulate
matter (PM) 2.5, PM10, ozone, or nitrogen dioxide. However,
several recent studies (Heck et al. 2013a, 2013b; Ghosh et al.
2013) have reported associations between some forms of child-
hood cancer and exposure to air pollutants either early in life or
prenatally.

Little is known about possible relationships between water
pollution and childhood cancers, and existing studies have found
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inconsistent results (Makris and Andra 2013; Oller-Arlandis
and Sanz-Valero 2012). Among adults, water pollutants have
been linked to breast cancer (Brody et al. 2007), and via spa-
tial modeling to total cancer mortality (Hendryx, Fedorko, and
Halverson 2010; Hendryx et al. 2012). Prior research has iden-
tified the value of stream ecosystems in predicting cancer mor-
tality rates in West Virginia (Hitt and Hendryx 2010); results
from this study suggested that the composition of stream in-
vertebrate communities can indicate epidemiological outcomes
through indirect exposure pathways related to coal mining
carcinogens.

The use of spatial modeling techniques offers a disease
surveillance approach to identify existing geographical areas
in Florida where pediatric cancer rates are unusually high. This
study builds upon prior work by Amin et al. (2010) by incor-
porating additional years of study and by also using the non-
parametric permutation test to test for a space–time interaction
(Kulldorff et al. 2005). We offer the working hypothesis that
pediatric cancers will demonstrate spatial clustering within the
state, both on univariate and multivariate levels.

2. DATA

The childhood cancer incidence counts for ages 0–19 years
were obtained from the Florida Association for Pediatric Tu-
mor Programs (FAPTP), which is a reliable source for cancer
incidence data in Florida (Krischer et al. 1993; Roush et al.
1993). The dataset on leukemia, lymphoma, and brain/central
nervous system (CNS) cancers included information on several
variables, such as date of birth, age, and residence location at
the time of cancer diagnosis, sex, in addition to the FAPTP diag-
nosis code for the years 2000–2010. These codes correspond to
the International Classification for Childhood Cancer (ICCC),
which incorporates the new codes ICD-O-2 and ICD-O-3.
The matching population data were obtained from the 2000
census and the 2010 census, using interpolation for the years
2001–2009. The specific source of the population files is the
American Fact Finder of U.S. Census (U.S. Census Bureau
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Figure 1. Cluster analysis of Brain/CNS incidence rates (adjusted for age and sex) for 2000–2010 in Florida.

2013a), and we use the ZIP Code Tabulation Areas (ZCTAs) as
finest level of geographic resolution. Rarely, the ZCTAs change
over time and thus there are some ZCTAs that are only avail-
able in 2000 or in 2010. For these cases, the population in
2000 and 2010 is used, respectively. For all other cases (the
majority), the population is interpolated between the popula-
tion given for 2000 and for the year 2010. If a ZCTA is only
available in the year 2000 (but not in 2010), the population
of the year 2000 is used without any adjustment. The setting
for SaTscanTM included the following: Precision of case times:
Days. Coordinates: Cartesian, Covariate #1, age groups: 1 =
0–4 years, 2 = 5–9 years, 3 = 10–14 years, 2 = 15–19 years.
Covariate #2, sex: 1 = male, 2 = female. Population years:
2000, 2010. The codes for brain/CNS cancers used in this study
are: 82720, 89400, 90643, 93601, 93623, 93803, 93813, 93831,
93903, 93913, 94003, 94130, 94243, 94303, 94403, 94503,
94703, 94733, 95013, 95083, 95903, 95603. The leukemia codes
are: 98003, 98013, 98053, 98203, 98233, 98263, 98273, 98353,
98363, 98403, 98613, 98633, 99313, 99403, 99751, 99891.
Finally, the codes for lymphoma are: 95903, 95913, 96503,
96873, 97023, 97273, 99701.

3. METHODS

In this study, we used the software SaTScanTM (Kulldorff
1997; Kulldorff and Information Management Services Inc.
2009) due to its capabilities for spatial and space–time anal-
yses. Our application of this software follows methods in Amin
et al. (2010); however, we now also include the permutation
test and the multivariate cluster analysis (Kulldorff et al. 2007)

in addition to the spatial analysis and the space–time analy-
sis. We use spatial scan statistics (Kulldorff and Nagarwalla
1995) to identify and test for the significance of clusters. We
initially used univariate cluster analyses for three response vari-
ables (brain tumor, leukemia, lymphoma). This is followed by a
multivariate cluster analysis in which these three response vari-
ables are jointly analyzed. The geographical units analyzed for
the cancer rates are the ZCTAs, where the ZCTAs have been
created by the U.S. Census Bureau to avoid some disadvantages
of using USPS ZIP codes, which are based on mail delivery
routes (U.S. Census Bureau 2013b). Census blocks are aggre-
gated to create ZCTAs. The incidence counts in each ZCTA are
used either in two dimensions, for a purely spatial analysis, or
in three dimensions, for a space–time analysis. We assumed that

Figure 2. Age and sex-adjusted brain tumor rates in Florida (out of
100,000).
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Figure 3. Cluster analysis of leukemia incidence rates (adjusted for age and sex) for 2000–2010 in Florida.

the incidence of pediatric cancer in each ZCTA is distributed
according to a Poisson model. This method tests the null hy-
pothesis that the risk of cancer is the same for all ZCTA units in
Florida.

A cancer cluster is defined as a region with a statistically
significant excess in the number of cancer cases that occurs, as
defined in (CDC 2013c). Clusters may be specific to one form
of cancer, or to many forms. And usually statistical significance
is assessed after controlling for potential confounding variables,
such as sex, race, or income.

The spatial scan statistics in SaTScanTM identifies clusters
by imposing a window that moves over a map, including
different sets of neighboring ZCTAs, as represented by their

Figure 4. Age and sex-adjusted leukemia rates in Florida (out of
100,000).

corresponding centroids. If the window includes the centroid
of a specific ZCTA, then this geographical unit is included in
the window. The center of the window is positioned only at
the ZCTA centroids. For each window, the spatial scan statistic
tests the null hypothesis of equal risk of cancer incidence for
all ZCTAs against the alternative hypothesis that there exists
an elevated risk of cancer incidence within the scan window as
compared to ZCTAs outside the window. The software allows a
choice between using circular windows and elliptically shaped
windows, and the user can choose what the maximum window
size should be for the analysis. Throughout this study, we used
circular windows, such that an infinite number of circles is cre-
ated around each centroid, with radii such that anything from
zero up to a maximum of 50% of the population is included.
SaTScanTM finds the number of cancer cases inside and outside
each circle, adjusts for the population sizes, and calculates the
likelihood function for each circle. The potentially problematic
cluster at that center is the one whose radius maximizes the
likelihood function.

SaTScanTM accounts for multiple testing by comparing the
maximum likelihood ratio from the actual dataset with the max-
imum taken over all the evaluated circles, with the distribution
of the maximum likelihood ratios based on the datasets that
were generated under the null hypothesis. This is the same way
by which all scan statistics adjust for multiple testing (Kulldorff
1997).

The space–time scan statistic is defined by a cylindrical win-
dow with a circular geographic base and with height correspond-
ing to time. The base is defined exactly as for the purely spatial
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Figure 5. Cluster analysis of lymphoma incidence rates (adjusted for age and sex) for 2000–2010 in Florida.

scan statistic, while the height reflects the time period of poten-
tial clusters. The cylindrical window is then moved in space and
time, so that for each possible geographical location and size,
it also considers each possible time period. In effect, we obtain
an infinite number of overlapping cylinders of different size and
shape, jointly covering the entire study region, where each cylin-
der reflects a possible cluster. The space–time scan statistic may
be used for either a single retrospective analysis or for multiple
time-period prospective surveillance analyses. In the latter case,
it is possible to adjust the current analysis for previous analyses
already conducted by specifying the start date of the prospective
surveillance.

It is possible that an identified space–time cluster is in fact
driven by purely spatial effects or by purely temporal effects,
and it is recommended that a space–time permutation test be
used to make sure that what has been identified as a space–time
cluster was, in fact, due to a space–time interaction, as opposed
to a simple spatial cluster. The space–time permutation scan
statistic uses a model that does not need the population data,
and the expected number of cancer cases is calculated using
only the observed cancer counts. In order to adjust for the very
large number of multiple tests, and since the population data
are not used, a large number of random permutations of the
spatial and the temporal attributes are created. Then, the most
likely cluster is calculated for each of the simulated datasets
as for the actual datasets. This computer-intensive space–time
permutation test adjusts for purely spatial clustering in addition
for purely temporal clustering while it accounts for multiple
testing (Kulldorff et al. 2005).

The likelihood function for the Poisson model is proportional
to

(
n

E

)n (
N − n

N − E

)N−n

I (n > E),

where n is the number of cancer incidences within the scan
window, N is the total number of cancer incidences in the popu-
lation, and E is the expected number of cancer incidences under
the null hypothesis. Since we are using a one-tailed test that
rejects the null hypothesis if there exists elevated cancer risk,
an indicator function I is used such that I = 1 when the scan
window has a larger number of cancer incidences than expected
if the null hypothesis were true, and zero otherwise. It can be
shown that for a given N and E, the likelihood increases as the
number of incidences, n, increases in the scan window.

Using a Monte Carlo simulation, we generated 999 random
replications of the dataset in order to assess the statistical stabil-
ity for the identified cancer clusters in the program SaTScanTM.

The Monte Carlo simulation also allows for the simultaneous
controlling of the confounders age and sex. The identified can-
cer clusters are listed by SaTScanTM in order of significance.
SaTScanTM first identifies a “most likely cluster,” followed by
“secondary clusters” such that the p-value for each cluster is
compared to a preset significance level of 0.05. The more recent
versions of SaTScanTM use a Gumbel approximation for the
p-values, making it possible to obtain more precise p-values
for given number of Monte Carlo replicates (Abrams, Klein-
man, and Kulldorff 2010). Without the use of this new result,
it was previously necessary to use 10 times as many simulated
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Figure 6. Age and sex adjusted lymphoma rates in Florida (out of
100,000).

replicates to obtain an additional digit for the p-values. An added
advantage of the new approach is the fact that the approach
based upon the Gumbel distribution has smaller variability than
the Monte Carlo based p-values, in addition to slightly higher
statistical power.

There are two possible approaches in SaTscanTM for adjust-
ing the cancer rates for one or more covariates, such as age and
sex. The first approach is to first use a Poisson regression to
predict cancer counts from a covariate, such as age. This is fol-
lowed by outputting the predicted cancer counts, and then using
the predicted values as the population file in SaTScanTM, while
the actual cancer counts are used in the case file. The second
approach is to do such an adjustment in SaTScanTM directly
and without first running a regression analysis, using the input
files. In such a case, one enters the covariates as extra columns
in the case file and in the population file into SaTScanTM. For
the Poisson model, indirect standardization is used to calculate
the covariate-adjusted expected cancer counts (Kulldorff and
Information Management Services Inc. 2009). We adjusted for
covariates using the input files, the second method. Prates, Kull-
dorff, and Assunção (2014) conclude that the scan statistic has
high power for correctly identifying a cluster, and they evaluated
whether there is any bias in the estimated risks for the identified
clusters. They concluded that the purely spatial scan statistic
has no major bias in its estimates and that the estimated relative
risks are slightly biased upward for clusters with low power,
while clusters with medium to high power have negligible bias
for the relative risks.

In this study, we present cancer clusters identified by circular
windows with SaTScanTM, as it is the shape that has been most
widely used (Kulldorff and Information Management Services,
Inc. 2009; Amin et al. 2010).

Table 1. Univariate purely spatial cluster analysis of age and
sex-adjusted incidence rates

Cancer type
Relative

risk
Number
of cases

Expected number
of cases p-value

Brain 1.34 409 334.77 0.012
Leukemia 1.35 279 215.31 0.029
Lymphoma 1.52 160 113.68 0.024
All Cancers 1.29 1264 1022.17 < 0.00001

Table 2. Cancer rate estimates (out of 100,000) and standard
deviations (mean, SDV)

Brain Leukemia Lymphoma All cancers

Cluster 3.03,0.54 4.98,0.99 2.17,0.33 16.92,2.46
Outside
Cluster

2.27,0.16 3.68,0.42 1.42,0.16 13.07,0.87

Florida 2.48,0.22 3.83,0.41 1.54,.15 13.67,0.94

4. RESULTS

The purely spatial analysis of the FAPTP dataset at the ZCTA
level on brain tumor/CNS cancer rates (adjusted for age and sex)
with the SaTScanTM software revealed one significant (most
likely) cluster in the southern part of the state, close to Miami.
The most likely cluster is the cluster with the largest likelihood
ratio in the cluster analysis. It is the cluster that has the highest
probability of not being due to some random causes. Across the
entire state, after adjusting for age and sex covariates, there was
a total of 1194 brain tumor/CNS cancer cases identified with
a corresponding incidence rate of 2.5 average annual cases per
100,000. In this cluster, there were 409 observed cases and 334.8
expected cases, with a relative risk (RR) of 1.34, implying that
compared with the state there is a statistically significant 34%
increased risk of childhood brain tumor (p = 0.012). Figure 1
shows incidence rates for pediatric brain cancers after adjusting
for age and sex, and Figure 2 shows the brain cancer tumor rates
after adjusting for age and sex. In Figure 2, the red solid line
gives the rates for the most likely cluster, while the dotted red
line gives the brain tumor rates for the rest of Florida. The solid
black line gives the rates for all of Florida.

Since a purely spatial analysis (for the period 2000–2010)
cannot show when the cluster was formed, a space–time analy-
sis was performed, assessing the south Florida cluster using the
Poisson model within SaTScanTM. We observed that the spatial
dimensions of the cluster persisted north of Miami during these
periods. South Florida emerged as the most likely temporal clus-
ter with elevated risk during 2006–2010. Whereas the observed
cases were 208, the expected were 145.5, so the relative risk
was RR = 1.52, and the significance probability was p = 0.019,
implying a significant 52% increase in childhood brain tumor
rates in south Florida compared with the state of Florida. The
coordinates for this cluster are (26.006735 N, 80.460152 W),
with a radius of 81.22 km and a population of 1,221,660. In or-
der to verify that the space–time cluster is not due to a statewide
increase in brain tumor rates, we conducted a nonparametric

Table 3. Multivariate cluster for age and sex adjusted cancer rates
(p = 0.0038)

Cancer
type

Relative
risk

Number of
cancer
cases

Expected number
of cancer cases

Brain 1.03 151 146.56
Leukemia 1.31 283 224.41
Lymphoma 1.46 126 91.17
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Figure 7. Multivariate cluster analysis of (brain, leukemia, lymphoma) incidence rates (adjusted for age and sex) for 2000–2010 in Florida.

permutation test (Kulldorff et al. 2005), which was not
significant, with p = 0.88. This implies that we do not
have a space–time interaction in Florida for childhood brain
tumors.

The purely spatial analysis of leukemia rates (adjusted for
age and sex) with SaTScanTM identified one region northwest
of Miami in south Florida (during the period of 2000–2010),
similar to the cluster areas identified for the brain/CNS, but
with a location shift to the northwest. A total of 1833 leukemia
cases in the state were identified and used in this analysis. There
was a statistically significant cluster in south Florida, (RR =
1.35, p = 0.029) (Figure 3). The coordinates for this cluster are
(26.180909 N, 81.605313 W), with a radius of 132.77 km and a

Figure 8. Age and sex adjusted total cancer rates in Florida (out of
100,000)

population of 514,632. The space–time analysis of the leukemia
cases identified a small cluster around Clearwater, but the per-
mutation test again did not support a space–time interaction (p
= 0.38), so we conclude this is a purely spatial leukemia clus-
ter. The purely spatial analysis indicated that leukemia rates in
the south Florida cluster area remained elevated throughout the
entire period (2000–2010), when compared to the state.

Figure 4 gives the age and sex adjusted leukemia rates for the
years 2000–2010.

A purely spatial analysis of lymphoma again identified an area
northwest of Miami in south Florida as the most likely cluster.
Of the 745 cases identified in the state, there were 160 observed
cases and 113.7 expected cases in this region. The relative risk
comparing Florida to south Florida is, RR = 1.52, p = 0.024
(Figure 5). The coordinates for this cluster are (25.779298 N,
80.198739 W), with a radius of 30.69 km and a population of
670,220. A space–time analysis of lymphoma cases was not sig-
nificant, with p = 0.094. The purely spatial analysis indicated
that lymphoma rates in the south Florida cluster area remained
elevated throughout the entire period (2000–2010), when com-
pared to the state. Figure 6 gives the age and sex-adjusted lym-
phoma rates for the years 2000–2010.

The results for the univariate analyses, for each of the three
types of cancer separately, are shown in Table 1.

Estimates of cancer rates (out of 100,000) and the correspond-
ing 95% confidence intervals are given in Table 2.

The three types of pediatric cancers (brain, leukemia, lym-
phoma) are relatively rare cancers, and the statistical power of
the likelihood ratio test used in the cluster analysis may be lower
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Figure 9. Cluster analysis of all pediatric cancer types (adjusted for age and sex) for 2000–2010 in Florida with a spatial poisson model.

than if we simultaneously analyzed the data with a multivari-
ate cluster analysis in which the variance-covariance structure
of the multivariate observations will provide a more powerful
test. The multivariate approach has better statistical properties
than obtained by simply adding up all pediatric cancer cases
and then using a univariate cluster analysis. When searching for
clusters with high cancer rates, the multivariate scan statistic
with multiple datasets works as follows: (i) the log-likelihood
ratio (for each window location and size) is calculated for each
dataset; (ii) when datasets have more than the expected number
of cancer cases, the log-likelihood ratios for such datasets are
summed up, and the resulting sum is considered the likelihood
for that particular window; (iii) the most likely cluster has the
maximum of all the summed log-likelihood ratios, taken over all
the window locations and sizes, which is evaluated in the same
way as is done in the univariate case for a single dataset (Kull-
dorff and Information Management Services Inc. 2009). Since
the different datasets, types, and streams are independent under
the null hypothesis, the null distribution for the multivariate scan
statistic does not use the covariance information.

A multivariate purely spatial cluster analysis with the
SaTScanTM software, set to identify any cluster in a three-
dimensional space, resulted in one significant cluster. This clus-
ter is located close to Miami, and it is similar in shape to the
cluster for leukemia, which is not unexpected since leukemia is
the pediatric cancer with the highest incidence rate among all
cancer types.

The SaTScanTM output lists information on the three cancer
types for this cluster (Data Set 1 = Brain/CNS, Data Set 2
= Leukemia, Data Set 3 = Lymphoma), as given in Table 3.
The multivariate cluster is significant (p = 0.0038), with RR =
1.03 for brain/CNS, RR = 1.31 for leukemia, and RR = 1.46

for lymphoma (Figure 7). The coordinates for this cluster are
(25.942742 N, 81.383188 W), with a radius of 109.00 km and a
population of 536,504. The p-value for the multivariate analysis
is much smaller than any of the individual p-values for the three
univariate analyses.

While the role of brain/CNS in the multivariate cluster seems
to be minor, both leukemia and lymphoma display higher in-
cidence rates than the rest of Florida, with leukemia rates be-
ing 31% higher, and lymphoma being 46% higher, in a purely
spatial analysis for the years 2000–2010. No other significant
multivariate cluster has been identified for Florida.

Following Amin et al. (2010), we also did a cluster analysis
for all pediatric cancer cases of all types. The purely spatial
analysis of the pediatric cancer rates (adjusted for age and sex)
with SaTScanTM identified two significant clusters. The most
likely cluster in Figure 9 (shown in red) is located to the west
and south of Lake Okeechobee for the period of 2000–2010,
with RR = 1.29 and p < 0.000001. The significant secondary
cluster (shown in orange) is located in the northern part of
Florida, with RR = 1.28 and p < 0.00001. A second-round
cluster analysis for each of the two significant clusters identifies
a hot spot northwest of Orlando around Ocala (RR = 2.26, p
< 0.00001), and a hotspot west of Lake Okeechobee (RR =
2.19, p < 0.00001), as shown with circles in Figure 9. The total
cancer rates (adjusted for age and for sex) are given in Figure 8
for the years 2000–2010.

5. DISCUSSION

Our study identified significant pediatric clusters based on
age- and sex-adjusted cancer incidence rates. A cluster analysis
of brain/CNS rates resulted in one significant purely spatial

D
ow

nl
oa

de
d 

by
 [6

8.
10

9.
11

1.
19

3]
 a

t 1
9:

28
 0

5 
M

ay
 2

01
5 



76 Statistics and Public Policy, 2014

cluster (p = 0.012) located in the southern part of Florida,
stretching from Lake Okeechobee to south of Miami, with a
relative risk of 1.34. Figure 2 shows that the cluster area had
elevated brain tumor rates throughout 2000–2010, with a peak
in 2007, as reported in Amin et al. (2010). After 2007, the rates
dropped in 2008 and 2009, but there is a sharp increase seen for
2010.

We also uncovered a significant leukemia cluster (p = 0.029)
in the southern part of Florida, starting from west of Lake
Okeechobee and stretching down south to Miami on the eastern
Florida coast, with a relative risk of 1.35 for age and sex ad-
justed rates. Figure 4 shows that the cluster had elevated rates
throughout 2000–2010, with a peak in 2002, and then stayed
higher than the rates in Florida for the remaining years.

In recent years, there were two prominent cancer cluster in-
vestigations for this part of Florida.

In the late 1990s, an unusually large number of pediatric
cancers for brain/CNS was reported in St. Lucie County, with
claims that releases of Strontium 90 from the St. Lucie nuclear
power station may have been linked to the high rate of can-
cers. Boice et al. (2005) studied mortality rates for the period
1950–2000, without being able to identify associations between
cancer mortality rates and the operation of the St. Lucie nuclear
power station for St. Lucie County. The other investigation of
a suspected brain cancer cluster in this region occurred in Palm
Beach County in 2009, known as The Acreage. The investigation
by the Florida Department of Health did not result in identifica-
tion of environmental factors for the Acreage-suspected cancer
cluster. The National Academy of Sciences (NAS) is currently
conducting a study on a potential cancer risk from living near a
reactor that is operating normally. The U.S. Nuclear Regulatory
Commisson (NRC) asked the NAS to conduct this study (NRC
2013).

The lymphoma cluster (p = 0.024) is smaller in geographical
size, and it is located north of Miami. This cluster has relative
risk of 1.52. Figure 6 shows the cluster to have consistently
higher lymphoma rates than the rest of Florida, with a peak in
2006. When analyzing all pediatric cancer types combined, the
most likely cluster spiked in 2006, and it stayed higher than the
rest of Florida after 2006.

The cluster analysis results for the three cancer types and the
total cancer rates are similar to what Amin et al. (2010) con-
cluded. The three most widely recorded pediatric cancer types
all occur in a geographical area that is close to Miami and to
Lake Okeechobee. The relative risk values are not small, indi-
cating cancer rates that are higher than what is found in other
parts in Florida by 35%–52%. The multivariate likelihood ratio
test has more statistical power than any of the univariate tests
above, and it identifies an area that is similar in coverage as
the leukemia cluster, with relative risk values for lymphoma
(RR = 1.31) and for leukemia (RR = 1.46), with p = 0.0038.
It is notable that only the multivariate tests identified clusters
that also included the Everglades. This is most likely due to
the additional statistical power of this test. While we obtained
significant space–time clusters for each of these three cancer
types, a follow-up nonparametric permutation test indicated for
each cancer type that there was no space—time interaction and
that the elevated cancer rates were purely spatial for 2000–2010.
This implies that the increase in cancer rates has been consistent

throughout 2000–2010. The (univariate) results in this study do
not differ much from the results that were obtained by Amin
et al. (2010) with FAPTP data for the years 2000–2007, ex-
cept that there was a sharp increase in pediatric cancers from
2005–2007, with a significant space–time interaction in Amin
et al. (2010). We have used data for 2000–2010, and this allowed
us to obtain more accurate estimates of population counts for the
years 2001–2009 by interpolating linearly between the census
years 2000 and 2010, in addition to the use of the nonparametric
permutation test and the multivariate likelihood ratio test. The
cluster analysis of all pediatric cancer types combined resulted
in two significant clusters. It is our belief that disease surveil-
lance studies such as ours can assist health departments in focus-
ing their resource more efficiently upon potentially problematic
regions that are identified through careful statistical analysis.

Trumbo (2000) studied the frequency of requests from health
departments to look into suspected cancer clusters. This study
discovered that in 1997 alone there were approximately 1100
cluster investigation requests, where very few such requests
were determined to justify a significant investigation. Cluster
analysis is a powerful statistical tool that can identify geograph-
ical areas and the associated times during which cancer rates
were unusually high. It provides a necessary methodology that
can be used to highlight hotspots, which then can be studied
further with epidemiological methods by the health authorities.

[Received February 2014. Revised May 2014.]
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